numeral fracionário - translation to ρωσικά
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

numeral fracionário - translation to ρωσικά

Cálculo Fracionário

numeral fracionário      
дробное число
numeral ordinal         
CLASSE DE PALAVRAS QUE DESCREVE NÚMEROS
Numeral árabe; Numerais; Numeral cardinal; Numeral ordinal
порядковое числительное
numeral cardinal         
CLASSE DE PALAVRAS QUE DESCREVE NÚMEROS
Numeral árabe; Numerais; Numeral cardinal; Numeral ordinal
количественное числительное

Ορισμός

numeral
adj m+f (número2+al3)
1 Que diz respeito a número.
2 Que designa um número.
3 Diz-se das letras empregadas na numeração em algarismos romanos
sm Gram Classe de palavras, símbolos ou grupo de símbolos que representam um número
N. cardinal: o que exprime quantidade absoluta: 2, 9, 27. N. fracionário: o que designa quantidade fracionária: meio, terço, quarto
N. multiplicativo:
o que indica quantidade multiplicativa: duplo, triplo, quádruplo
N. ordinal:
o que exprime ordem ou série: primeiro, segundo, terceiro, quarto.

Βικιπαίδεια

Cálculo fracionário

O Cálculo de Ordem Não inteira, tradicionalmente conhecido como cálculo fracionário é um ramo da análise matemática que estuda as possibilidades de usar potências de números reais ou potências de números complexos em operadores diferenciais

D = d d x {\displaystyle D={\frac {d}{dx}}\,}

e o operador de integração J. (Usualmente J é usado no lugar de I para não causar confusão com outras notações semelhantes a I e identidades.)

Neste contexto, o têrmo potência refere-se à aplicação interativa ou composição, com o mesmo sentido que f 2(x) = f(f(x)).

Por exemplo, pode-se questionar o significado da interpretação

D = D 1 / 2 {\displaystyle {\sqrt {D}}=D^{1/2}\,}

como uma raiz quadrada de um operador derivacional (um operador semi-interativo), i.e., uma expressão para algum operador que quando aplicado duas vezes em uma função terá o mesmo efeito que uma diferenciação. Generalizando, podemos definir a questão

D a {\displaystyle D^{a}\,}

para números reais, valores de a como quando a passa pelos valores inteiros n, usualmente uma diferenciação por n cobre os n > 0, e as −nésimas potências de J quando n < 0.

Há vários motivos para analisarmos esta questão. Um é que, deste modo o semigrupo das potências Dn na variável discreta n é vista como um semigrupo contínuo (espera-se) que os parâmetros a onde é um número real. Semigrupos contínuos pré-valentes em Matemática são de interesse teórico. Diz-se que fração é então o mesmo que o expoente, desde que precise ser um racional, mas que a expressão cálculo fracionário torne-se padrão por tradição.

Equações fracionárias diferenciais são uma generalização de equações diferenciais pela aplicação do cálculo fracionário.